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Anelastic behaviour of materials under 
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Part 2 Poisson's ratio, coupling of strains and anelastic 
relaxation in Zircaloy-4 
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Data on Poisson's ratio as a function of temperature, obtained in rods and tubes of Zircaloy-4 
through dynamical measurements in longitudinal excitations, are presented. The influence of 
texture and the contribution of a coupling between longitudinal and transversal vibrations on 
the observed temperature dependence of this elastic constant, is discussed. Finally, an anelas- 
tic effect produced by relaxation of Poisson's ratio, in the temperature region between 400 
and 450 K, is also presented. This effect is present only in tubular specimens and it is dis- 
cussed in terms of a theory of anelastic relaxation under multiaxial strains. 

1. I n t r o d u c t i o n  
The elastic constants of zirconium-rich alloys, used in 
nuclear applications, have been found to be strongly 
dependent on texture and to vary comparatively less 
with alloy content [1-3]. This substantiates the calcu- 
lation of the elastic constants of zirconium alloys by 
means of  zirconium single crystal data. Generally, a 
space average of the monocrystal compliance coef- 
ficients is used, weighted by the crystallographic pole 
density and a good agreement with experimental 
measured values for Young's and shear moduli was 
encountered [2, 3]. A reasonable agreement is also 
found when the measured values are compared with 
those predicted by Voigt and Reuss averages. In fact, 
it can be stated, in general, that the predicted and 
measured values for these moduli do not differ by 
more than 25% [1 6]. Furthermore, a similar situ- 
ation is found for their temperature dependence 
where, in addition, the predicted and measured behav- 
iour are substantially the same. This is not the case for 
Poisson's ratio, however, where the predicted values 
differ substantially from the experimental data, and it 
was found for some alloys that the predicted tempera- 
ture dependence of this elastic constant was opposite 
to the experimental one [2]. 

The most recent review on all the elastic constants 
for zirconium-rich alloys has been presented by 
Northwood et al. [2], even if systematic errors were 
introduced on calculating Poisson's ratio [7]. The last 
review, as far as we know, on elastic constants for 
different metals and alloys, has been presented by 

K6ster and Franz [8] where it can be seen that the 
situation is quite similar to that encountered in zir- 
conium alloys; that is, the agreement between predic- 
ted and measured values is reasonable for Young's 
and shear moduli, but very poor for Poisson's ratio. 
This was also pointed out in a recent publication [9], 
where a general formalism has been presented, to be 
used to calculate the average elastic constants for a 
random polycrystal in terms of the elastic constants 
for the single crystal. 

Povolo and Bolmaro [7, 10] have analysed the dif- 
ferent values reported in the literature for Poisson's 
ratio of metals and alloys, showing that this elastic 
constant is more strongly influenced by anisotropy 
than Young's and shear moduli. In fact, even negative 
values were estimated for single crystals. Clearly, in 
this condition the usual method of  obtaining Poisson's 
ratio for polycrystals, from the measured Young's 
and shear moduli, through the very well known 
relationship 

v = ( E / Z G ) -  1 (!) 

valid for isotropic solids, might lead to serious errors 
if preferred orientations are present. E and G are 
Young's and shear moduli, respectively and v is 
Poisson's ratio. It might be possible, also, that v is 
more sensitive to impurities, that is, to alloying, par- 
ticularly for certain orientations. 

From the experimental point of view, there are only 
limited data in the literature on direct measurements 
of Poisson's ratio. In addition, these data have been 
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obtained by means of a conventional mechanical test, 
where it is difficult to establish if the specimen has 
been really deformed in the elastic regime. 

P-1-V It is the purpose of this paper to present data on 
P-2-V 

Poisson's ratio as a function of temperature, for tubes p-3-v 
and rods of Zircaloy-4. The measurements were per- P-4-V 
formed by using a resonant method in longitudinal p-5-v 
excitation and the results are discussed in terms of P-1-M 
theories of elastic vibrations and of anelasticity under 
multiaxial strains. This last theory has been presented P-2-M 
in detail elsewhere [11]. 

T A B L E  I Dimensions of the tubes and rods used 

Specimen r i (ram) ro (ram) L (ram) 

5.39 5.95 

6.185 

149.941 
150.017 
149.958 
149.982 
149.745 

149.883 

149.959 

2. Experimental procedure 
The longitudinal resonant frequencies were measured 
by using the " f ree- f ree"  or floating beam resonant 
method, described by Spinner and Tefft [12] and 
Sorrentino [13]. In particular, the electrostatic drive 
and detection method with a polarizing voltage 
(condenser microphone arrangement) was used [14-16]. 
The apparatus was constructed in the laboratory and 
the supporting device was made of Zircaloy-4 to avoid 
the influence of dilatations on the interelectrode 
capacity. The basic electronic instrumentation is 
shown as a block diagram in Fig. 1 and the details are 
described elsewhere [17, 18]. 

The equipment utilizes the capacitive coupling be- 
tween the specimen and fixed electrodes positioned 

close to vibration antinodes. Displacement sensitivi- 
ties of 1 to 2pm have been obtained at the strain 
amplitudes of the order of 10 -8 used for the measure- 
ments. Specimens of Zircaloy-4 in the form of cylin- 
drical rods approximately 150 mm long and 12 mm 
diameter and tubes, normally used as fuel shearing, 
approximately 150 mm long and 12 mm outer diameter, 
were used. The densities, ~, of  all the specimens, deter- 
mined with a picnometer at 299 K, were ~ = 6.680 _ 
0.003gcm 3 for fuel sheatings, and ~ = 6.587 + 
0.003 gcm -3 for rods. The frequency can be determined 
with a relative error of  the order of 5 x 10 -4 ,  intro- 
duced mainly by the suspension point. The relative 
errors in the determination of the rest of the magni- 
tudes involved are: 1 x 10 -6 on the lengths, 2 x 10 -5 
on the diameters and 5 x 10 -4 on the densities. The 
temperature was controlled, between room tempera- 
ture and 723 K, with a proportional controller which 
gave an accuracy of _+ 2 K. This indetermination in 
the temperature implies a relative error of the order of 
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Figure 1 Block diagram of the basic electronic instrumentation. 

2 x l0 -5 on the frequencies, which is smaller than the 
error introduced by the suspension point. 

The complete solution of  the equation of  motion for 
the propagation of free harmonic waves along a hollow 
cylinder of finite extent, leads to an implicit trans- 
cendental function of the type [19] 

q~ = q~(E,v, 0, L, fj, r , , ro) = 0 (2) 

where L is the length of the cylinder, ri and r o are the 
inner and outer diameters, respectively, and ~ is the 
resonant frequency wherej  = 1, 2, 3... gives the order 
of the harmonics for a specimen suspended in the 
centre. Equation 2 cannot be solved algebraically for 
fj, in terms of the properties of the material and the 
dimensions of the specimen, and must be solved 
numerically. The case of cylindrical rod is also rep- 
resented by Equation 2 with q = 0. The dimensions 
of the specimen used are given in Table I. In most 
cases, the resonant frequencies are given accurately 
enough by the expression 

] 
4L 2 (r i + ro)2j (3) 

or, even by the simplest solution 

J 
£ = 2L (E/~°)'/a (4) 

In principle, Poisson's ratio can be obtained from 
Equation 3 by measuring the resonant frequencies at 
two different harmonics, j and j* ,  and solving for v, 
that is 

v = [( j*f j  - jfj,)/(j,3fj _ j3£ , ) ] I /2  

x [2L/~(r~ + r2o) '/2] (5) 

on assuming that E is independent of frequency. 
The simplest solutions to the wave equation, given 

by Equations 3 and 4, give good values for E, as 
calculated from the measured f1 , the properties of the 
material and the dimensions of the specimen. This was 
found to be the case for rods and, to a lesser extent 
for tubes, where the deviation between the measured 
frequencies and those predicted by Equation 3 or 4 
increases with the order of the harmonics [19]. 

Some comments should be made next about the 
influence of the thermal expansion on the results. 
In fact, if Young's modulus is calculated from the 
measured resonant frequencies by using the first-order 
approximation given by Equation 4, then, the influ- 
ence of the thermal expansion is represented by 

ET2 = 4L 2, [1 + ~ ( T  2 --  TI)] 2 

× £-22QTI/[1 -F 30¢(T 2 --  r l )  ] (6) 
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T A B L E  II Relative error of Poisson's ratio, e,,, obtained by 
propagation of the error in the measurements of the frequencies into 
Equation 4 

~,,(%) / j* 

17 1 3 
9 3 5 
5 5 7 
3 7 9 
7 9 II 

where Tl is the room temperature, T2 is the tempera- 
ture at which the resonant frequency is measured and 
c~ is the linear thermal expansion coefficient. The cor- 
rection to Young's modulus, implied by Equation 6, is 
less than 2.5 x l0 -3, in the temperature region con- 
sidered in the paper. The use of the second-order 
approximation, that is, if the influence of thermal 
expansion is introduced into Equation 3, leads to a 
smaller correction. Moreover, corrections due to ther- 
mal expansion are not necessary in the evaluation of 
Poisson's ratio, to a first approximation, because the 
(1 + c~T) dependence of L and r compensates each 
other. 

Finally, even if the resonant frequencies are deter- 
mined with a relative error of the order of 5 x 10 -4, 
the error propagated on Poisson's ratio is, in several 
cases, greater than the repetitiveness of the measure- 
ments. In fact, on considering Equation 5, for example, 
and using classical calculations for the propagation of 
errors, the results given in Table II are obtained for the 
relative error, e,., on Poisson's ratio. Such a large 
dispersion on the results, however, was not obtained 
experimentally because the statistical dispersion, point 
to point, is eliminated by the special mathematical 
procedure used. In fact, E and v were calculated from 
the measured frequencies by solving numerically 
Equation 2 and using an iterative procedure [19]. A 
maximum relative error of the order of 5% is expected, 
in the most unfavourable situation. 

3. Results 
3.1. Tubes 
Fig. 2 shows the values obtained for Young's modu- 
lus as a function of temperature and at three dif- 
ferent harmonics, in tube P-I-V. Harmonics 5 and 9 
are not indicated to avoid superposition. These val- 
ues have been calculated by solving numerically 
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Figure 2 Young's modulus as a function of temperature for j = 
( - - - ) 1 ,  ( .-)3 and ( . . . . . . . .  )7, calculated by using Equation 2 and 
the measured frequencies. Specimen P-1-V. 
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Figure 3 Comparison between the values for Poisson's ratio 
obtained by using Equation 5, V~pp, with those given by a numerical 
solution of Equation 2, vre,~, for tube P-1-V. The pair of harmonics 
used to calculate each curve are indicated. 

Equation 2 and using the measured frequencies. A 
linear regression analysis of all the data points leads to 
the following expressions for the temperature depen- 
dence of Young's modulus, measured at the different 
frequencies: 

El = 101.485 -- 0.07085 ( T -  273K) 

E3 = 101.692 - 0.073 09 (T -- 273K) 

Es = 101.554 - 0.075 86 (T - 273K) 

E7 = 101.077 - 0.07724 ( T -  273K) 

E9 = 101.083 - 0.074 88 (T - 273K) (7) 

Equations 7 and Fig. 2 show that the value obtained 
for Young's modulus does not depend strongly on the 
harmonics selected and almost the same temperature 
dependence is obtained for each resonant frequency. 
Moreover, similar results would be obtained by using 
the approximate Equations 3 and 4. The situation is 
completely different for Poisson's ratio, however, 
where the complete equation, i.e. Equation 2, must be 
used. In fact, Fig. 3 shows a comparison between the 
values obtained for Poisson's ratio, V a p p ,  o n  using 
the approximate Equation 5 with those obtained by 
solving numerically Equation 2, which are indicated 
by Vreat. The pair of harmonics used for each curve are 
also indicated in the same figure. Vreal gives the values 
of Poisson's ratio without the influence of shape 
effects and Vap v was obtained by fitting the E against T 
curves, at each harmonic, by linear regression analy- 
sis, taking pairs of curves and solving the square root 
of Equation 5 by approximating it with a second- 
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Figure 4 Poisson's ratio for tube P-l-V as a function of temperature 
and frequency. The pair of  harmonics used are indicated on each 
curve. 

degree polynomial. This procedure reduces the aleatory 
error in each point. Fig. 4 shows a plot of Vre,~ against 
temperature, where the subscript has been omitted for 
simplicity. Only results corresponding to adjacent 
frequencies will be considered in what follows to avoid 
any possible influence of a frequency dependence of 
Young's modulus on the results. 

A more careful analysis of the experimental data 
shows a discontinuity in the general temperature 
dependence of the resonant frequencies, in the tem- 
perature region between about 400 and 450 K. This is 
illustrated in Fig. 5, where the temperature depen- 
dence of the square of the normalized frequencies, for 
harmonics 1 and 7, is shown, fj0 indicates the corres- 
ponding frequency obtained at room temperature. A 
linear regression in the two sections, indicated by the 
straight lines, leads to correlation coefficients nearer to 
one than for the case where only one straight line is 
considered at all the temperatures and for each har- 

O.C 

0.8 

300 400 500 600 700 T ( K ) 

Figure 5 Discontinuity in the temperature dependence of the res- 
onant frequencies for tube P-1-V. (O) j  - 1; ( + ) j  = 7. 
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Figure 6 Temperature dependence of Poisson's ratio for tube P- l-V, 
on considering the discontinuities in the mea, sured temperature 
dependence of the resonant frequencies. The pair of  harmonics used 
for the calculation of v are indicated on each curve. 

monic. This discontinuity in the resonant frequencies 
is reflected and magnified in the temperature depen- 
dence of Poisson's ratio, as calculated with the pro- 
cedure described previously. This is illustrated by 
Fig. 6, where v has been calculated for adjacent har- 
monics on taking into account the discontinuities 
observed on the temperature dependence of the dif- 
ferent resonant frequencies. The results shown are 
representative of the data obtained in all the tubular 
specimens investigated. 

3.2. Rods 
Fig. 7 shows typical results obtained for Young's 
modulus in cylindrical specimens. The curve shown is 
the average over all the harmonics, because only 
minor differences were obtained at the various resonant 
frequencies. A linear regression through all the data 
points leads to the following expression for the straight 
line shown in Fig. 7 

E = 99.366 - 0.064 17 (T - 273 K) (8) 

The corrected values for Poisson's ratio, obtained for 
each pair of harmonics, are shown in Fig. 8, where it 
can be seen that Poisson's ratio does not fall more 
rapidly with temperature on increasing the frequency, 
as observed in tubes, and the measured curves have 
practically the same slope for the different overtones. 

3.3. Drilled cylindrical rods 
In order to study the transition from the cylindrical 
rod to the tube, the rod was drilled longitudinally, 
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Figure 7 Temperature dependence of Young's  modulus for cylindri- 
cal rods, obtained at all frequencies. 
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Figure 8 Poisson's ratio as a function of temperature for cylindrical 
rods and different combinations of harmonics. 

to form tubes with different dimensions. Seven suc- 
cessively increasing diameters were drilled and the 
resonant frequencies were measured as a function of 
temperature. It was observed that the frequencies 
for the higher overtones decreased more rapidly with 
temperature as the inner diameter increased. The tem- 
perature and frequency dependence of Poisson's ratio, 
at two different inner diameters, are shown in Figs 9 
and 10. These figures show that the dispersion in 
the values of Poisson's ratio, for the different har- 
monics, increases as the inner diameter increases, and 
v decreases at high temperatures and at the higher 
overtones, on going from the rod to the tube, i.e. when 
the inner diameter increases (compare Figs 9 and 10 
with Figs 4 and 8). 

4. Discussion 
There are two effects contributing to the observed 
change in the measured values for Poisson's ratio, 
with temperature and frequency, shown in Fig. 6: an 
anelastic relaxation of Poisson's ratio and a coupling 
between the different overtones produced mainly by 
the anisotropy, that is, by the texture of the specimen. 
Povolo and Bolmaro [11] have recently developed a 
theory of anelasticity under multiaxial strains. Accord- 
ing to this theory, if the angle 0 formed between the 
direction of the applied sinusoidal stress and the ( c ) -  
axis of the hexagonal crystal is ~/2, i.e. if the excitation 
is perpendicular to this axis, the strains produced are 
given by 

(9) 

J 3-5 / 
/ 1 - 3  

0.33 

0.31 

1-9 

0,29 
5,9 

0.27 
-7-9 

36o 46o 560 660 760 7- (K 

Figure 9 Poisson's ratio for a drilled rod with an internal diameter 
of 3.5 mm. 
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Figure 10 Poisson's ratio for a drilled rod with an internal diameter 
of 4.5mm. 

F 
C~ = L(SI2 COS21~ -F S13 sin2¢) 

+ sl2 cos2¢ + s13 sin20 + 

J/I, + i(D'r ~ COS21// Jr- co2v 2] (10) 

where e'3 is the strain in the direction of the applied 
stress and e; in a perpendicular direction. 6 represents 
the intensity and ~ the time, at constant stress, for the 
relaxation of (sit - s~2), co is the angular frequency of 
the applied stress and s U are the compliances of the 
hexagonal crystal. 0 indicates the direction in the 
plane whose normal is in the direction of the applied 
stress [7, 10, 11]. 0 and ~ are two of the Eulerian 
angles that define the orientation of the excitation 
with respect to the coordinate system referred to the 
hexagonal cell. For  ¢ = 0 the complex Poisson's ratio 
is given by 

% =  -- g~/c~ = v~oD -- iv(o2) = -- Is ,  is12 .-~ (Sl, -- ~ )  

6 2 

/ - -  ~ )  02 ' t  "2 ] (11) 

It is easy to show from Equation 11 that 

¢o D - <~/<~ ~oz -.* O 

@01). --(SI2Af-~)/(SI, - -~)  

(12) 

In addition, the curve of ¢0 D against coz has an inflec- 
tion point at 

1E/'( 
o r  - 31;2 st S l l -  (13) 
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Figure 11 Poisson's ratio as a function of  the reciprocal of  the 
absolute temperature,  as obtained f rom the data of  Fig. 6. 
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Figure 12 Anelastic relaxation of  Poisson's  ratio, as obtained by 
subtracting out the background f rom the curves of  Fig. 11. 

For ~ = ~/2 the complex Poisson's ratio is given by 

Yrc,2 - -  ~//~"3 7- ,,(1) ;,~,(2) 
= V~zl2 - -  ~ 1 2  

+(,1,- 

Equation 14 leads to 

(D'/7 ~ 0 , ( l j  __S13/SII vrr/2 

(D"C ~ 0(2) "re;,2 --  S13,/';' SII - -  
(15) 

The inflection point is also given in this case by 
Equation 13. The real part  of  v, i.e. v °), leads to a 
curve similar to the one found for Jj in the dynamic 
response of the standard anelastic solid [11, 20]. ¢2) 
leads to a Debye peak similar to the response function 
J2 .  In addition, Y(01) decreases and v~/2"(1) increases as cot 
increases. On taking into account the values for the 
elastic constants of  zirconium single crystals, reported 
by Fisher and Renken [21], at 450K, it is easy to show 
that 

V(ol)(cor ~ O) = - s l 2 / s l l  7- 0.453 (16) 

v~l/~(cor ~ O) = - s , 3 / s l .  = 0.194 (17) 

Moreover, if the temperature dependence o f t  is taken, 
as is usually done [20], as 

r = r0 exp ( A H / k T )  (18) 

where r0 is the pre-exponential factor and AH the 
activation enthalpy, then 

ln(~o~) = ln(coz0) + ( A H / k T )  (19) 

showing that ln(coz) changes linearly with T -~ , which 
means that as co~ increases, T ~ increases (Tdecreases). 
the data of  Fig. 6 are plotted as a function of T -  ~ in 
Fig. 11, where the discontinuities in the temperature 
dependence of Poisson's ratio are evident, in the 
temperature region between about 400 and 450 K, for 
the values obtained for harmonics 1 to 3 and 3 to 5. 
This is not so clear for the combination of harmonics 
7 to 9. Fig. 12 shows the curve obtained by extrapolat- 
ing the smooth decrease at high temperatures, by 

considering it as a background up to where the new 
background at low temperatures is present, after the 
sudden change. This procedure shows that v decreases 
from about 0.374 to 0.354 for harmonics 3 to 5. For 
harmonics 1 to 3, however, v increases from about  
0.34 to 0.356. It should be pointed out that the theo- 
retical values, given by Equations 16 and 17, corre- 
spond to single crystals, which is not the case because 
polycrystalline specimens were used to obtain the data 
presented and the texture of the material should be 
considered. 

Curve 1-3 of Fig. 12 shows the typical behaviour 
expected for ,,~) and curve 3-5 the general trend v~/2 

expected for v~ L). Moreover, on taking into account 
Equations 12 and 15 it is possible to calculate 6/s~ 
from the measured asymptotic values, for each curve. 
The following values are obtained 

6/sll = 9 x 1 0  - 2  for curve 1-3 (20) 

(~/SII 7- 6 x 10 2 for curve 3-5 (21) 

showing that similar values are obtained for 6 from 
both curves. In addition, the order of  magnitude of the 
relaxation measured seems reasonable when compared 
with data reported in the literature for measurements 
obtained from the relaxation behaviour of  Young's  
and shear moduli [20]. This would confirm the inter- 
pretation given in the paper of  the abrupt change 
observed in the temperature dependence of Poisson's 
ratio in the temperature region between about 400 and 
450 K, i.e. as being produced by anelastic relaxation. 
It is interesting to notice how the small perturbation 
present in the resonant frequencies, as indicated 
in Fig. 5, is magnified when Poisson's ratio is con- 
sidered. This would indicate that the defect respon- 
sible for the anelastic effects produces a distortion 
which is maximum in a direction perpendicular to the 
applied stress. It is clear that more information is 
needed in order to obtain additional characteristics of  
the defect involved in the relaxation process. 

It should be pointed out that the calculations per- 
formed are only approximate because, as pointed 
out before, textured polycrystals were used for the 
measurements. In fact, Equations 12 and 13 assume 
that the specimen is a single crystal and that the sinu- 
soidal stress is applied along specific directions. This 
is not the case for the tubes and rods used for the 
measurements, which are not only polycrystalline but, 
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Figure  13 (0 0 0 2) pole figure for Zircaloy-4 tubes. 

in addition, preferred orientations are present. Fig. 13 
gives the (0 0 0 2) pole figure for the tubes, as deter- 
mined by the Schulz technique. It is seen that the ( c ) -  
axis of the hexagonal crystals that form the polycrys- 
tal are oriented near the normal direction, between the 
longitudinal and transversal directions of the tube, as 
extremes. On remembering that the tubes are excited 
in the longitudinal direction it is seen that the condi- 
tions implied by Equations 9 to 15 are nearly fulfilled. 
It should be taken into account, however, that the 
observed temperature dependence of Poisson's ratio, 
shown in Figs 4, 6 and 11 is due to several effects. 
In fact, there is an anelastic contribution due to the 
relaxation of  v, typified by the extreme orientations 
considered and another contribution due to coupling 
between longitudinal and transverse vibrations, pro- 
duced by the particular texture present in the speci- 
mens. In fact, on solving Equation 2 it was assumed 
that the material is isotropic, which is certainly not 
the case. 

In order to get an idea of  the influence of  anisotropy 
on the results, it is possible to solve the wave equation 
for hexagonal crystals, by using elasticity theory of 
crystal vibrations. In fact, the velocities for the pro- 
pagation of elastic waves in crystals can be calculated 
with the classical equation [22] 

(~CO2~im- ciktmkkkl)um = 0 (22) 

where um are the components of  the displacement 
vector, Ciktm are the elastic constants and kk are the 
components of the wave vector. The three normal 
vibration modes can be calculated by solving the 
secular equation 

icikl,,k~kl - Qco261~[ = 0 (23) 

• Ath k = (k,, k,., k:) forming an angle 0 with the 
@)-axis of the crystal. 0 is the angle between the z- 
axis (which is along the sixth-order axis of the crystal) 
and the wave vector k. Then, k, = 0, k, = k sin 0 
and kz = k cos 0. If 0 = re/2 then k = (0, k, 0) and 
the three normal modes are 

cot = col = k [ ( c l l -  c12)/2Q] 1/2 u! = ( 1 , 0 , 0 )  

091 = 602 = k ( c i 1 / Q )  1/2 b/2 = (0,  1 , 0 )  

cot = (-03 = k ( c 4 4 / ~ ° )  1/2 /d 3 = (0,  0, l )  

(24) 

where 1 and t indicate longitudinal and transversal 

5 f - v(e-o) 
- 

300 400 500 600 700 F ( K ) 

Figure  14 Longitudinal, vt, and transversal velocities, vt, as a func- 
tion of temperature, for the propagation of elastic waves in zir- 
conium single crystals. Curves ! to 11 indicate the average velocities, 
for longitudinal excitations, calculated with Equation 26, 

vibrations, respectively. If 0 = 0 then k = (0, 0, k) 
and the three normal modes are 

COt = 091 = k ( c 4 4 / k O )  U2 u I = ( 1 , 0 , 0 )  

0,) t = 0,) 2 = k ( c 4 4 / 0 ~ )  1/2 L/2 = (0,  1 , 0 )  

col = e)3 = k(c33/~°) 1/2 u3 = (0,0,1) 

(25) 

The normal vibration modes are perpendicular and 
the velocities of propagation can be calculated, as a 
function of temperature, by using the elastic constants 
for zirconium single crystals reported by Fisher and 
Renken [21]. These velocities are shown in Fig. 14, 
as calculated with Equations 24 and 25 between room 
temperature and 723 K. 

On forcing longitudinal vibrations in the tube the 
wavelength is determined by the length of the speci- 
men and the frequencies are imposed by the driver. 
The wave vector is along the longitudinal axis of the 
specimen and the dispersion relationship co(k) is given 
by 

co(k ) / k  = 2 :L(1  + o~V)/j (26) 

The average velocities of the longitudinal waves, cal- 
culated with Equation 26 for the different harmonics, 
by using the measured frequencies, are also shown in 
Fig. 14. These velocities are average values not only 
over the longitudinal anisotropy but over the transver- 
sal anisotropy too, due to coupling with transversal 
vibrations. The average velocities are located in bet- 
ween those of the transverse and longitudinal modes 
of the single crystal. The frequency of the higher over- 
tones falls more rapidly with temperature than in solid 
bars, due to the coupling with the transversal vibra- 
tions, particularly at high temperatures. In fact, as 
shown elsewhere [7], Poisson's ratio increases strongly 
with temperature for a contraction in the direction of 
the @)-axis and decreases more slowly for a contrac- 
tion in a perpendicular direction. These two particular 
orientations are present in the fuel sheating and the 
coupling occurs, at low frequencies, with a transversal 
strain perpendicular to the  @)-axis of the crystals 
forming the polycrystals. At high frequencies, on the 
contrary, the coupling occurs with- a transversal strain 
perpendicular to the @)-axis, particularly at high 
temperatures. The coupling effect is not obvious at 
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(a) (b /  

Figure 15 Coupling between longitudinal and transversal vibrations 
in tubes. (a) low frequencies; (b) high frequencies. 

low temperatures because of the small differences 
between both Poisson's ratios. These two extreme 
coupling situations are illustrated schematically in 
Fig. 15. Furthermore, the coupling effects influence the 
observed temperature dependence of v and the asymp- 
totic values measured experimentally, which differ from 
the theoretical values given by Equations 16 and 17. 

A different situation is encountered for rods, where 
a poor coupling with transversal vibrations is obser- 
ved and only the transversal mode along the (c)-axis 
is activated. In fact, Fig. 16 gives the usual texture 
obtained in rods, as measured by neutron diffraction 
by Mac Ewen and Tom6 [23] for Zircaloy-4. It shows 
a classical random distribution of the (c)-axis over a 
plane perpendicular to the longitudinal axis of the 
specimen. From the measured temperature dependence 
of the different resonant frequencies and of Poisson's 
ratio, it can be concluded that v is only sensitive to 
transversal strains in the direction of the @)-axis. 

Finally, Figs 17 and 18 show the texture measured 
in a drilled rod, at two different drilled holes, with 
diameters similar to those used for the data shown in 
Figs 9 and 10. The texture was determined by cutting 
out a ring, flattening it and determining the preferred 
orientation in the inner surface. It can be seen that the 
texture approaches that observed in fuel sheatings, as 
the inner diameter increases. In fact, the (0 0 0 2) poles 
approach the radial direction, starting from a random 
distribution between the radial and tangential direc- 
tions. As shown by Figs 9 and 10, changes, as expec- 
ted, from the behaviour observed in rods to the trend 
observed in tubes. 

5. Conclusions 
An anelastic effect produced by relaxation of Poisson's 
ratio has been observed in Zirca!oy-4 tubes, in the 
temperature region between about 400 and 450K. 
This effect is strongly anisotropic and the temperature 
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Figure 17 (0002)  pole figure for a drilled rod with r i = 3.7mm. 

dependence of Poisson's ratio is influenced by the 
texture of the specimen, because of coupling effects 
between longitudina! and transversal vibrations. No 
anelastic phenomena in the temperature dependence 
of Poisson's ratio have been observed in Zircaloy-4 
rods, because of the particular texture involved. 

It has been shown that the experimental values 
obtained for Poisson's ratio, through dynamical 
experiments, must be analysed in detail because of the 
influence of various contributions to the measured 
temperature dependence. 

Finally, no specific mechanism is given for the 
defects responsible for the observed anelasticity, 
which is magnified in Poisson's ratio with respect to 
Young's modulus, because more experimental data 
are needed particularly in single-crystal specimens 
with different orientations. 
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Figure 16 (0 0 0 2) pole figure for Zircaloy-4 cylindrical rods, 
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